skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Guanhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Portevin–Le Chatelier effect, associated with dynamic strain aging, is widely found in various alloys, and the maximum serration magnitude from the tensile stress–strain curve can be considered as the point closest to the failure threshold. Due to the difficulty to define solute and solvent atoms in multicomponent alloys, it is a great challenge to explore the serration mechanism. In this study, the atoms that play the role of pinning are defined as solute atoms. Aided by mean-field theory, an in situ pinning model coupled with the twinning effect in a CoNiV alloy with low stacking fault energies is successfully established, which can well predict the failure threshold, i.e., the maximum serration magnitude. The present study paves a new way to correlate the serration dynamics and in situ pinning, and further predicts the failure threshold upon loading for multicomponent high- and medium-entropy alloys. 
    more » « less